3.215 \(\int \frac {(a+a \cos (c+d x))^{5/2}}{\sqrt {\cos (c+d x)}} \, dx\)

Optimal. Leaf size=120 \[ \frac {19 a^{5/2} \sin ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{4 d}+\frac {9 a^3 \sin (c+d x) \sqrt {\cos (c+d x)}}{4 d \sqrt {a \cos (c+d x)+a}}+\frac {a^2 \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d} \]

[Out]

19/4*a^(5/2)*arcsin(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d+9/4*a^3*sin(d*x+c)*cos(d*x+c)^(1/2)/d/(a+a*co
s(d*x+c))^(1/2)+1/2*a^2*sin(d*x+c)*cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.23, antiderivative size = 120, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {2763, 2981, 2774, 216} \[ \frac {19 a^{5/2} \sin ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{4 d}+\frac {9 a^3 \sin (c+d x) \sqrt {\cos (c+d x)}}{4 d \sqrt {a \cos (c+d x)+a}}+\frac {a^2 \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^(5/2)/Sqrt[Cos[c + d*x]],x]

[Out]

(19*a^(5/2)*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(4*d) + (9*a^3*Sqrt[Cos[c + d*x]]*Sin[c +
 d*x])/(4*d*Sqrt[a + a*Cos[c + d*x]]) + (a^2*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(2*d)

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 2763

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Si
mp[(b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(m + n)), x] + Dist[1/(d*
(m + n)), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^n*Simp[a*b*c*(m - 2) + b^2*d*(n + 1) + a^2*d*(
m + n) - b*(b*c*(m - 1) - a*d*(3*m + 2*n - 2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] &&  !LtQ[n, -1] && (IntegersQ[2*m, 2*
n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2774

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 2981

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-2*b*B*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(2*n + 3)*Sqr
t[a + b*Sin[e + f*x]]), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b*d*(2*n + 3)), Int[Sqrt[a + b*
Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]

Rubi steps

\begin {align*} \int \frac {(a+a \cos (c+d x))^{5/2}}{\sqrt {\cos (c+d x)}} \, dx &=\frac {a^2 \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{2 d}+\frac {1}{2} \int \frac {\sqrt {a+a \cos (c+d x)} \left (\frac {5 a^2}{2}+\frac {9}{2} a^2 \cos (c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {9 a^3 \sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{2 d}+\frac {1}{8} \left (19 a^2\right ) \int \frac {\sqrt {a+a \cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {9 a^3 \sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{2 d}-\frac {\left (19 a^2\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{a}}} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d}\\ &=\frac {19 a^{5/2} \sin ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d}+\frac {9 a^3 \sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 4.17, size = 182, normalized size = 1.52 \[ \frac {\tan \left (\frac {1}{2} (c+d x)\right ) \sec ^4\left (\frac {1}{2} (c+d x)\right ) (a (\cos (c+d x)+1))^{5/2} \left (2 \sin ^4(c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right ) \, _3F_2\left (\frac {3}{2},\frac {3}{2},2;1,\frac {9}{2};2 \sin ^2\left (\frac {1}{2} (c+d x)\right )\right )+8 \sin ^2(c+d x) (\cos (c+d x)+3) \, _2F_1\left (\frac {3}{2},\frac {3}{2};\frac {9}{2};2 \sin ^2\left (\frac {1}{2} (c+d x)\right )\right )+7 (28 \cos (c+d x)+3 \cos (2 (c+d x))+89) \, _2F_1\left (\frac {1}{2},\frac {1}{2};\frac {7}{2};2 \sin ^2\left (\frac {1}{2} (c+d x)\right )\right )\right )}{420 d} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + a*Cos[c + d*x])^(5/2)/Sqrt[Cos[c + d*x]],x]

[Out]

((a*(1 + Cos[c + d*x]))^(5/2)*Sec[(c + d*x)/2]^4*(7*(89 + 28*Cos[c + d*x] + 3*Cos[2*(c + d*x)])*Hypergeometric
2F1[1/2, 1/2, 7/2, 2*Sin[(c + d*x)/2]^2] + 8*(3 + Cos[c + d*x])*Hypergeometric2F1[3/2, 3/2, 9/2, 2*Sin[(c + d*
x)/2]^2]*Sin[c + d*x]^2 + 2*Csc[(c + d*x)/2]^2*HypergeometricPFQ[{3/2, 3/2, 2}, {1, 9/2}, 2*Sin[(c + d*x)/2]^2
]*Sin[c + d*x]^4)*Tan[(c + d*x)/2])/(420*d)

________________________________________________________________________________________

fricas [A]  time = 2.01, size = 111, normalized size = 0.92 \[ \frac {{\left (2 \, a^{2} \cos \left (d x + c\right ) + 11 \, a^{2}\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 19 \, {\left (a^{2} \cos \left (d x + c\right ) + a^{2}\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right )}{4 \, {\left (d \cos \left (d x + c\right ) + d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(5/2)/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

1/4*((2*a^2*cos(d*x + c) + 11*a^2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c) - 19*(a^2*cos(d*x
+ c) + a^2)*sqrt(a)*arctan(sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))))/(d*cos(d*x + c
) + d)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(5/2)/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [A]  time = 0.20, size = 188, normalized size = 1.57 \[ \frac {\left (2 \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+19 \cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}{\cos \left (d x +c \right )}\right )+11 \cos \left (d x +c \right ) \sin \left (d x +c \right )+19 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}{\cos \left (d x +c \right )}\right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, a^{2}}{4 d \sqrt {\cos \left (d x +c \right )}\, \left (1+\cos \left (d x +c \right )\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*cos(d*x+c))^(5/2)/cos(d*x+c)^(1/2),x)

[Out]

1/4/d*(2*cos(d*x+c)^2*sin(d*x+c)+19*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(sin(d*x+c)*(cos(d*x+c)
/(1+cos(d*x+c)))^(1/2)/cos(d*x+c))+11*cos(d*x+c)*sin(d*x+c)+19*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(sin(d*
x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c)))*(a*(1+cos(d*x+c)))^(1/2)/cos(d*x+c)^(1/2)/(1+cos(d*x+c))*a
^2

________________________________________________________________________________________

maxima [B]  time = 1.81, size = 1106, normalized size = 9.22 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(5/2)/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

1/16*(2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*((a^2*cos(1/2*arctan2(sin(2*d
*x + 2*c), cos(2*d*x + 2*c)))*sin(2*d*x + 2*c) + a^2*sin(2*d*x + 2*c) - (a^2*cos(2*d*x + 2*c) - 10*a^2)*sin(1/
2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + (a^
2*sin(2*d*x + 2*c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - a^2*cos(2*d*x + 2*c) + 10*a^2 + (a^2
*cos(2*d*x + 2*c) - 10*a^2)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*sin(1/2*arctan2(sin(2*d*x +
2*c), cos(2*d*x + 2*c) + 1)))*sqrt(a) + 19*(a^2*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x
 + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos
(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c
), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arct
an2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*ar
ctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) + 1) - a^
2*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x
+ 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*
x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 +
sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*c
os(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))
*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) - 1) - a^2*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*
c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*
c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) +
 1)) + 1) + a^2*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arcta
n2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1
)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 1))*sqrt(a))/d

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2}}{\sqrt {\cos \left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*cos(c + d*x))^(5/2)/cos(c + d*x)^(1/2),x)

[Out]

int((a + a*cos(c + d*x))^(5/2)/cos(c + d*x)^(1/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**(5/2)/cos(d*x+c)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________